

Perception with Confidence: A Conformal Prediction Perspective

Heng Yang

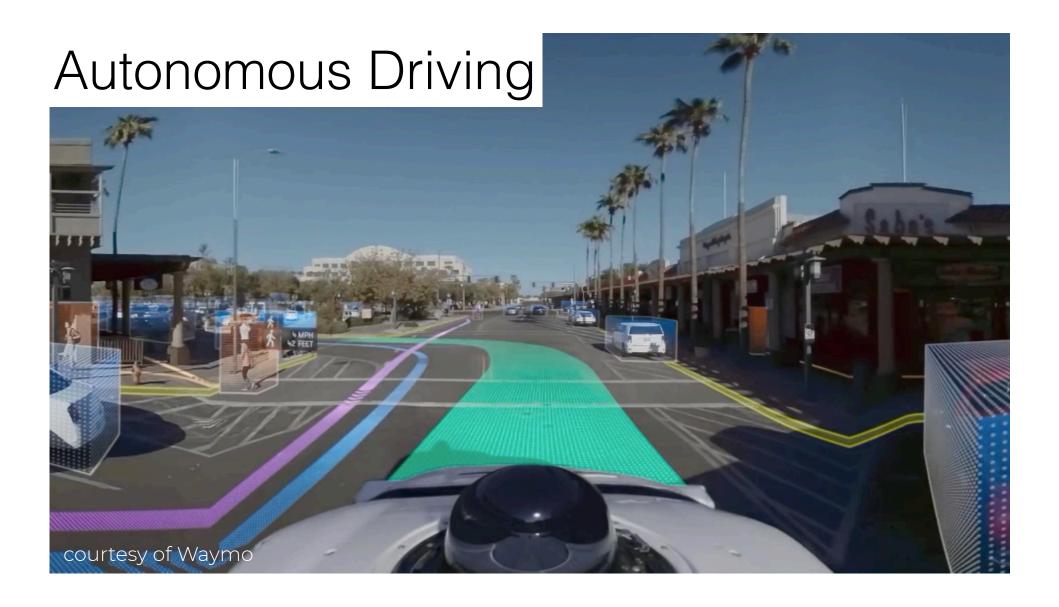
Research Scientist, NVIDIA Incoming Assistant Professor, Harvard University

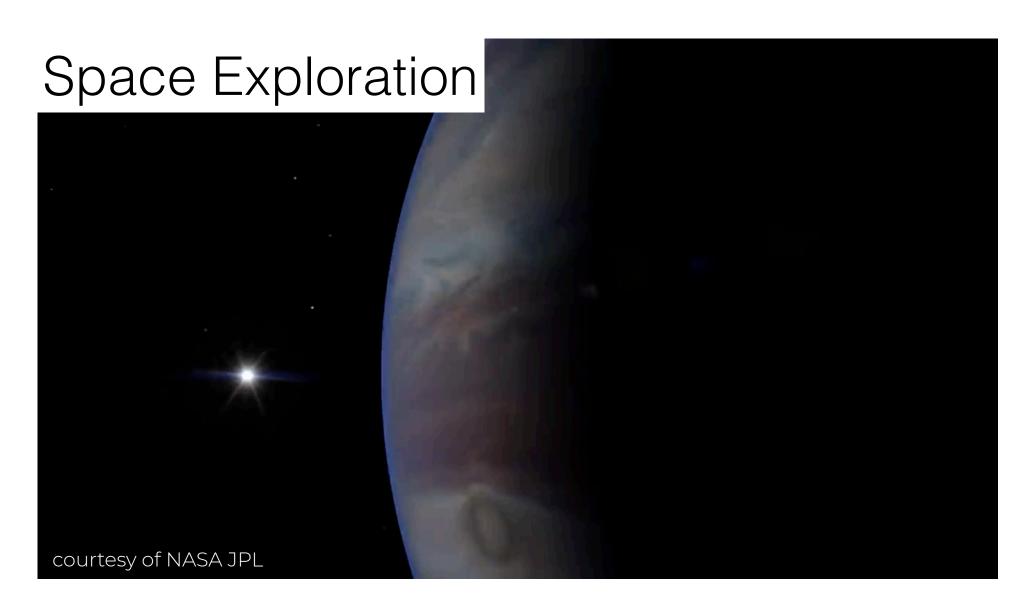
Oct. 23, 2022

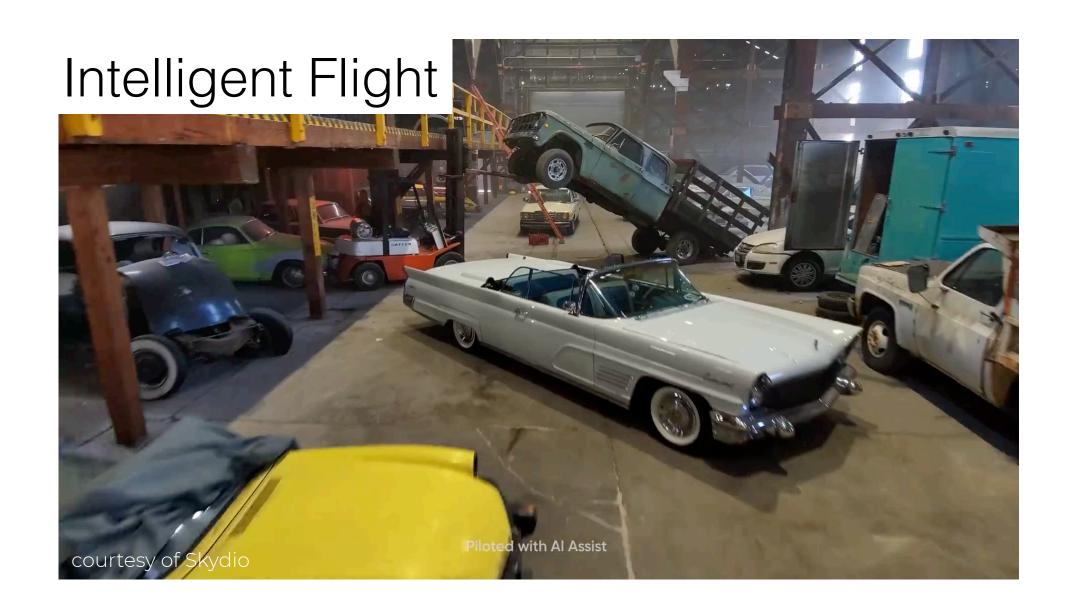
Joint work with Marco Pavone (NVIDIA/Stanford)

Workshop on 3D Perception for Autonomous Driving

Robotics and Autonomy

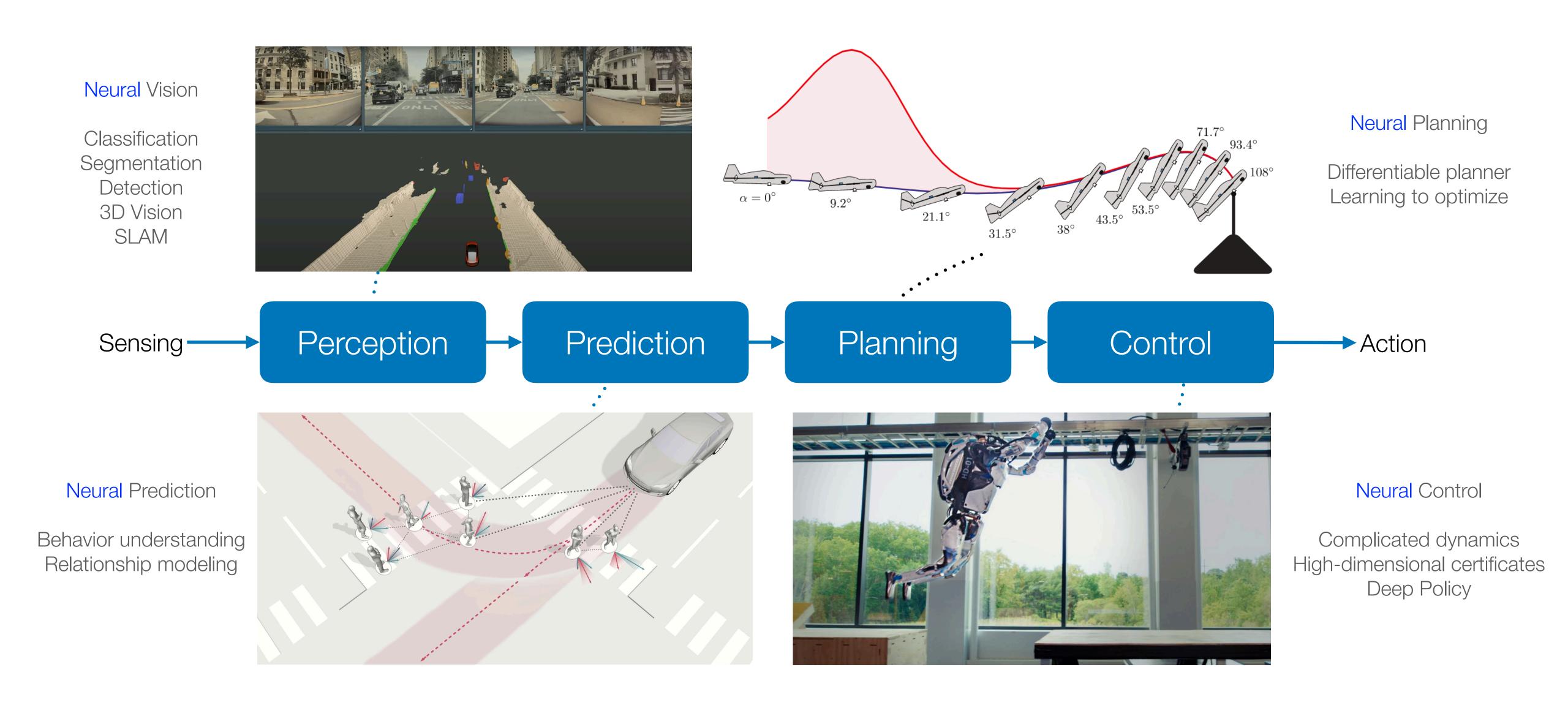


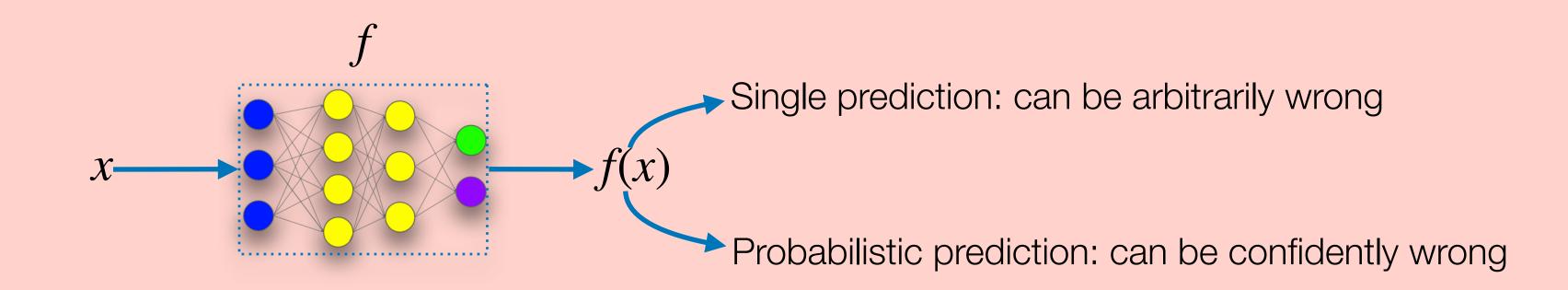


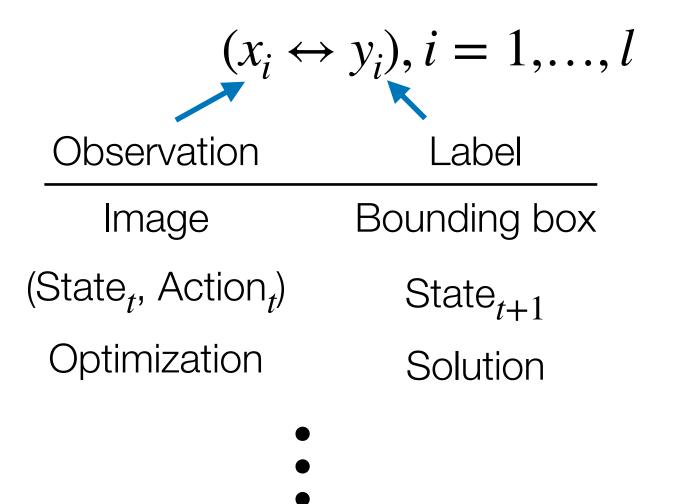


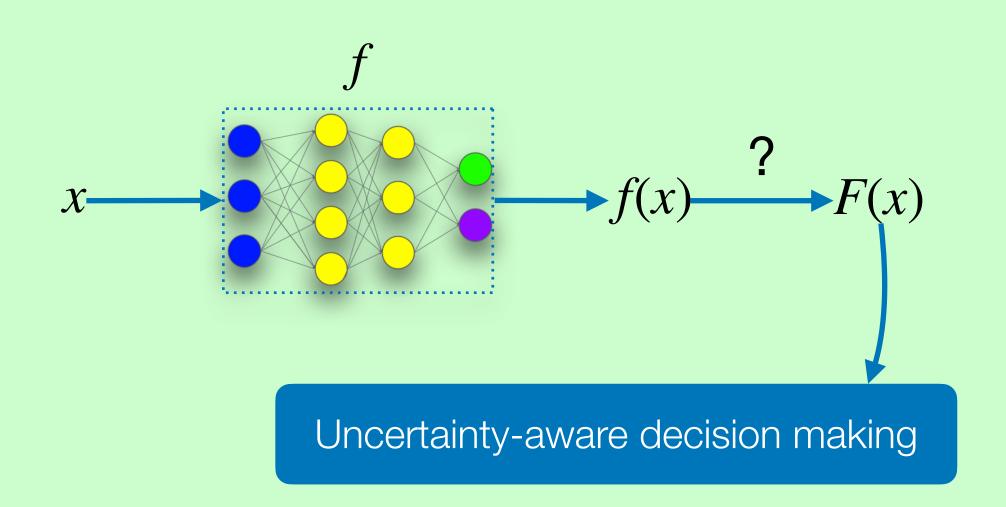
Robotics and Autonomy

Neural Representations — powerful but difficult to verify





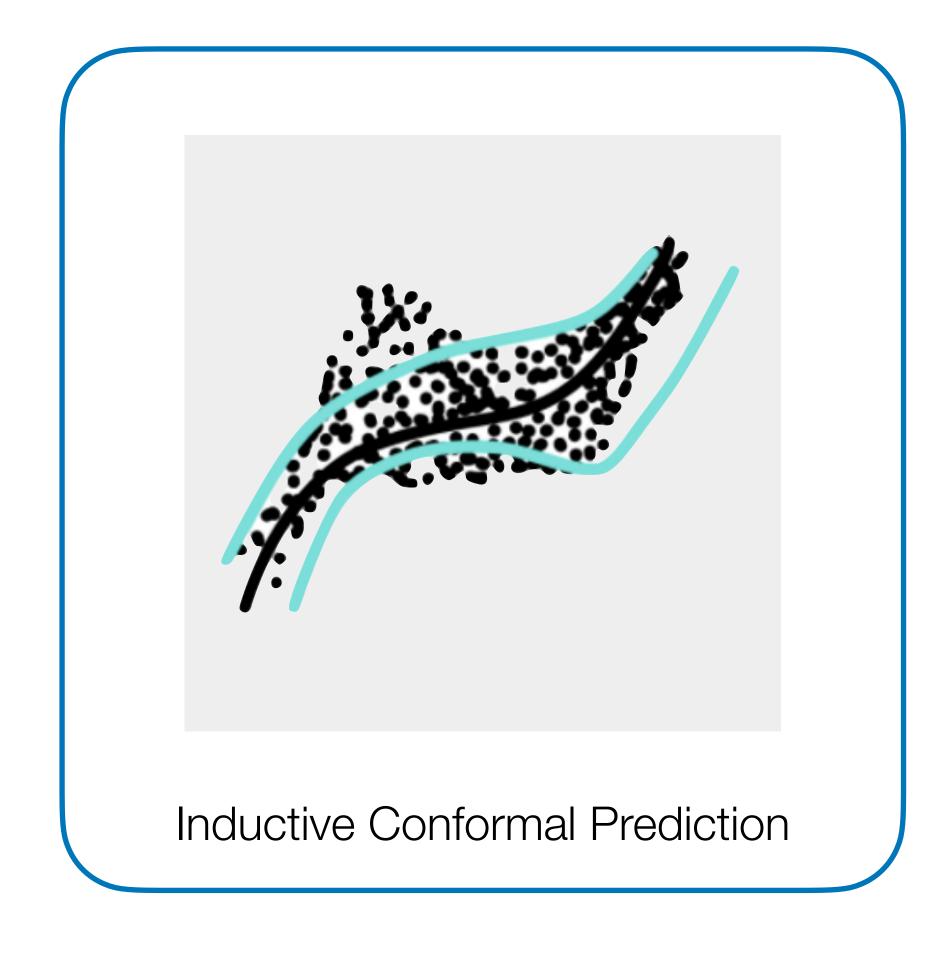


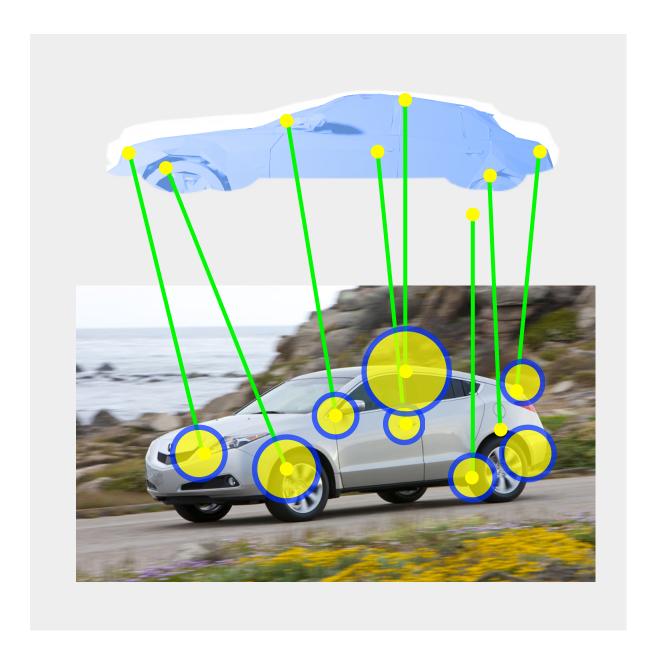


Provably correct prediction set

- Provable coverage: $y \in F(x)$
- Tight and adaptive
- Easy to compute
- Minimal assumption

This Talk: Provably Correct Conformal Prediction Set





Probabilistically Correct Object Pose Estimation

Inductive Conformal Prediction (ICP)

Given a training set $\{z_i=(x_i,y_i)\}_{i=1}^l$ drawn i.i.d. from an unknown distribution Q on the space $\mathcal{Z}=\mathcal{X}\times\mathcal{Y}$

Training

- proper training set $\{z_i\}_{i=1}^m$, calibration set $\{z_i\}_{i=m+1}^l$ (n:=l-m)
- \bullet Train any heuristic prediction f using the proper training set

Conformal Calibration

• Define a nonconformity function $S: \mathcal{Z}^m \times \mathcal{Z} \to \mathbb{R}$:

$$S({z_1, ..., z_m}, z) = r(y, f(x))$$

Compute the nonconformity scores in the calibration set:

$$\alpha_i = r(y_i, f(x_i)), i = m + 1, ..., l$$

• Sort the nonconformity scores: $\alpha_{\pi(1)} \ge \alpha_{\pi(2)} \ge \ldots \ge \alpha_{\pi(n)}$

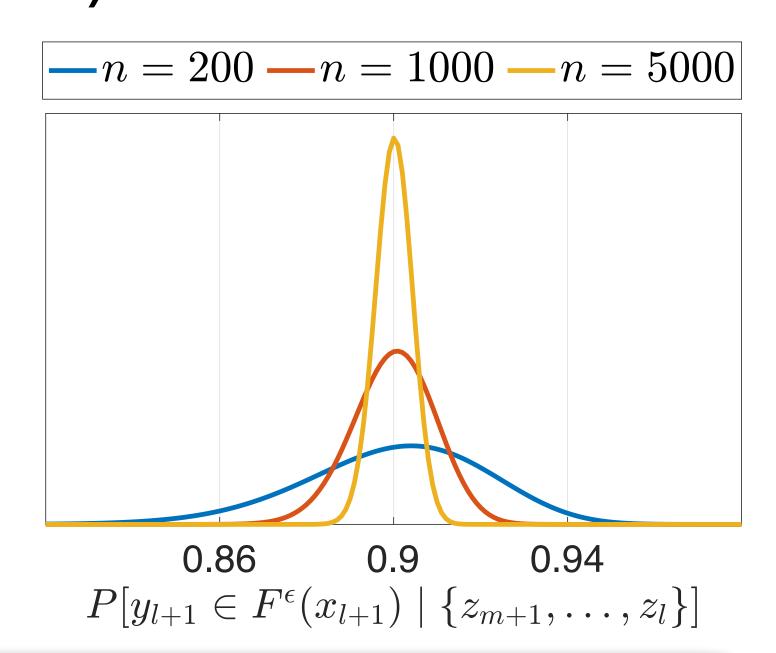
Conformal Prediction

• Given x_{l+1} , and user-specified error rate $\epsilon \in (0,1)$, output

$$F^{\epsilon}(x) = \{ y \in \mathcal{Y} \mid \alpha^{y} := r(y, f(x_{l+1})) \le \alpha_{\pi(\lfloor (n+1)\epsilon \rfloor)} \}$$

Inductive Conformal Prediction (ICP)

$$F^{\epsilon}(x) = \{y \in \mathcal{Y} \mid \alpha^y := \underbrace{r(y, f(x_{l+1}))} \leq \alpha_{\pi(\lfloor (n+1)\epsilon \rfloor)} \}$$
 more conforming
$$\alpha_{\pi(n)} \alpha_{\pi(n-1)} \qquad \alpha_{\pi(\lfloor (n+1)\epsilon \rfloor)} \qquad \alpha_{\pi(2)} \alpha_{\pi(1)}$$
 less conforming
$$\alpha_{\pi(2)} \alpha_{\pi(1)} \qquad \alpha_{\pi(1)} \qquad \alpha_{\pi(2)} \qquad \alpha_{\pi(1)}$$



Theorem Validity of ICP

If
$$z_{l+1}=(x_{l+1},y_{l+1})$$
 is exchangeable with $\{z_i\}_{i=m+1}^l$, then for any $0<\epsilon<1$

$$1 - \epsilon \le \mathbb{P}[y_{l+1} \in F^{\epsilon}(x_{l+1})] \le 1 - \epsilon + \frac{1}{n+1}$$

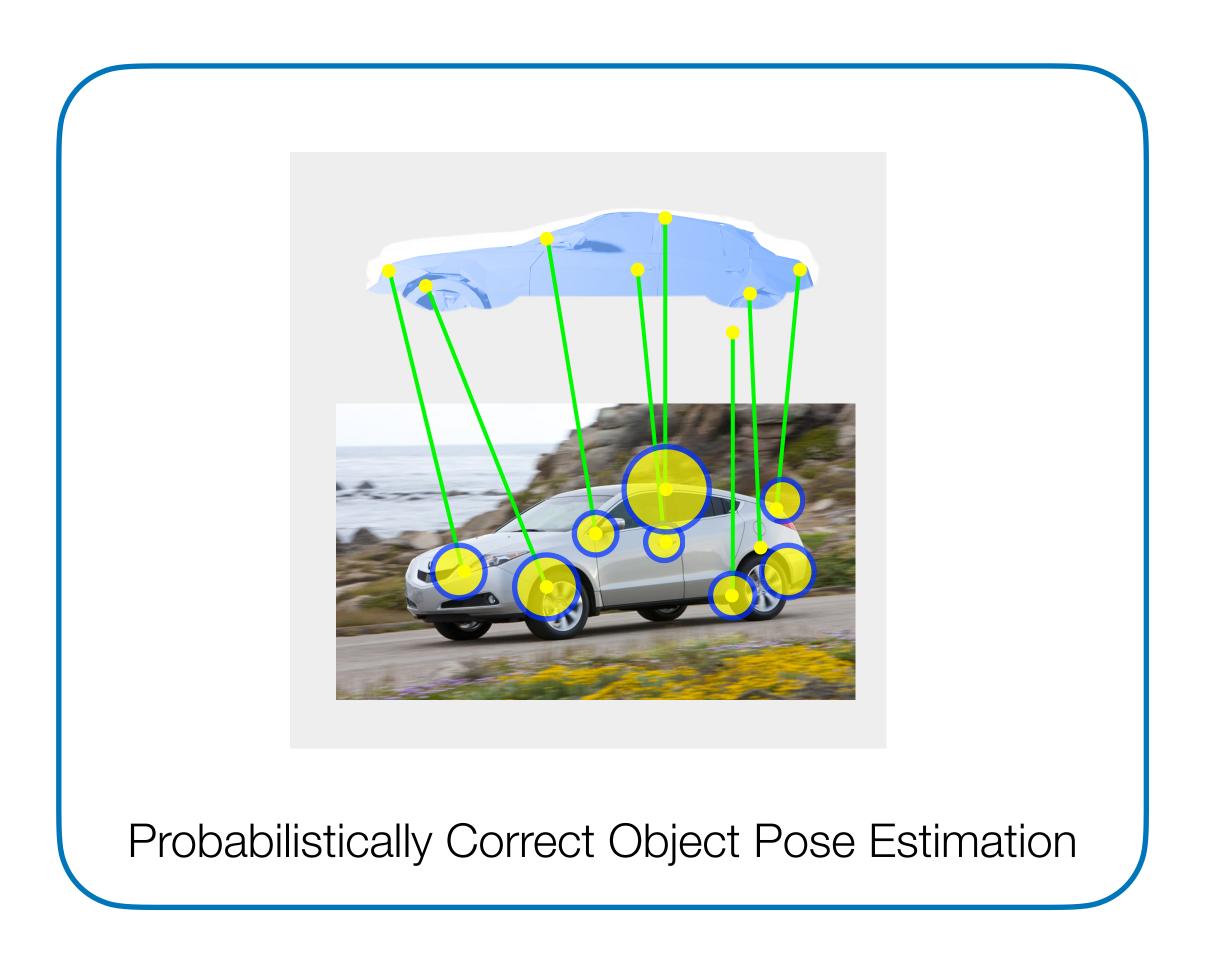
Moreover, conditioned on the calibration set, we have

$$\mathbb{P}\left[y_{l+1} \in F^{\epsilon}(x_{l+1}) \mid \{z_i\}_{i=m+1}^l\right] \sim \text{Beta}(n+1-t,t)$$

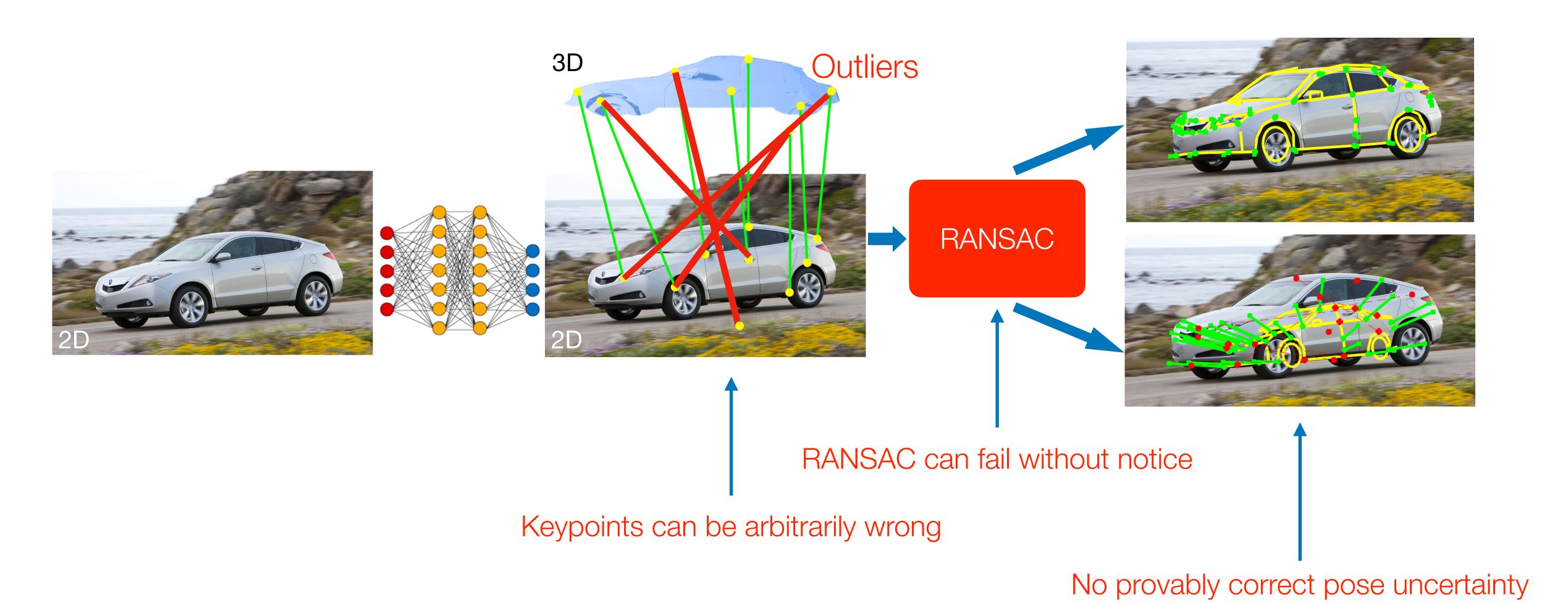
with
$$t = \lfloor (n+1)\epsilon \rfloor$$
.

This Talk: Provably Correct Conformal Prediction Set

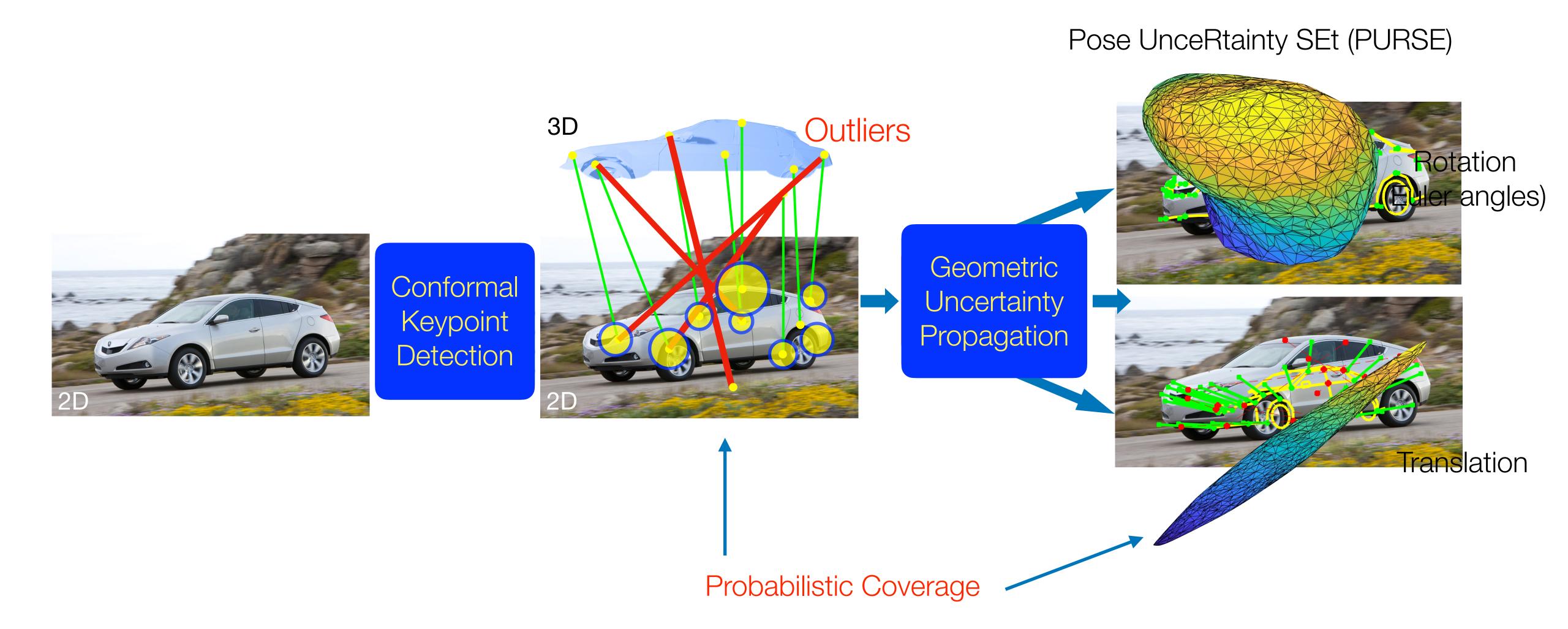
Inductive Conformal Prediction



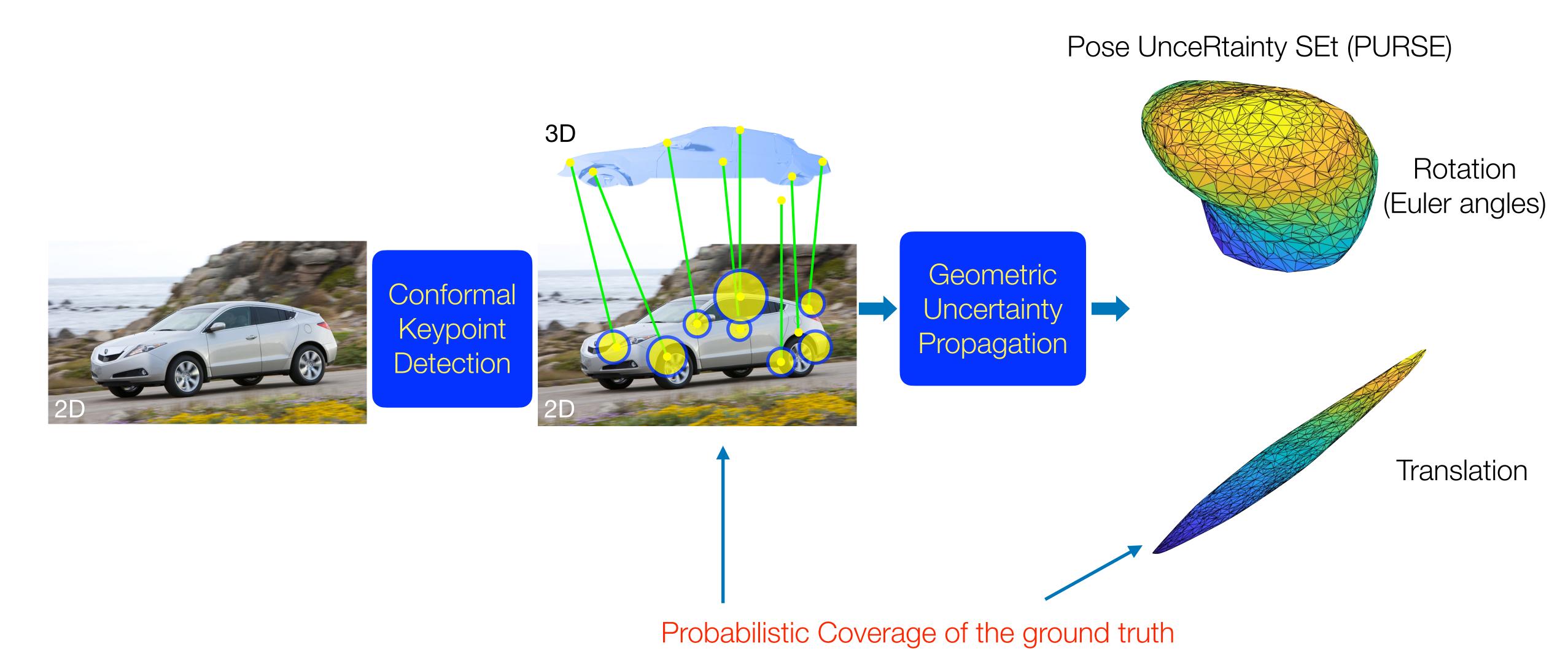
Object Pose Estimation



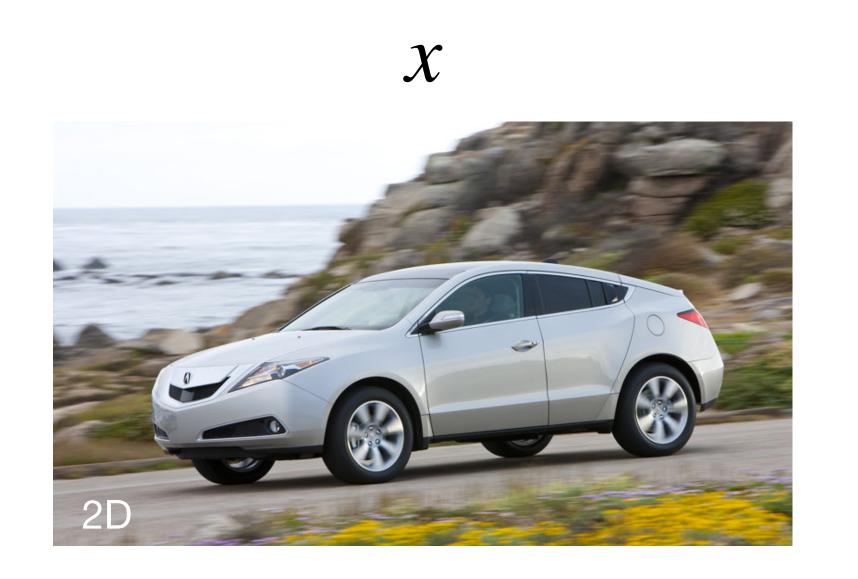
Probabilistically Correct Object Pose Estimation

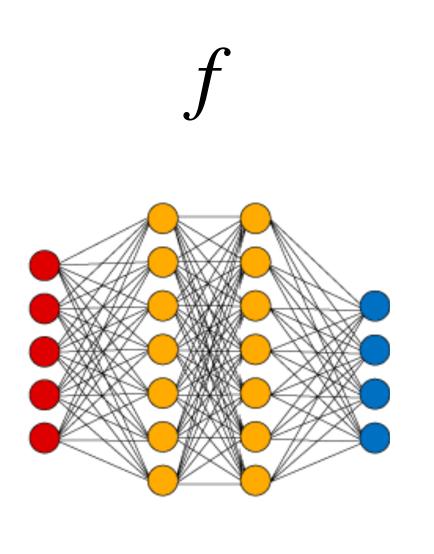


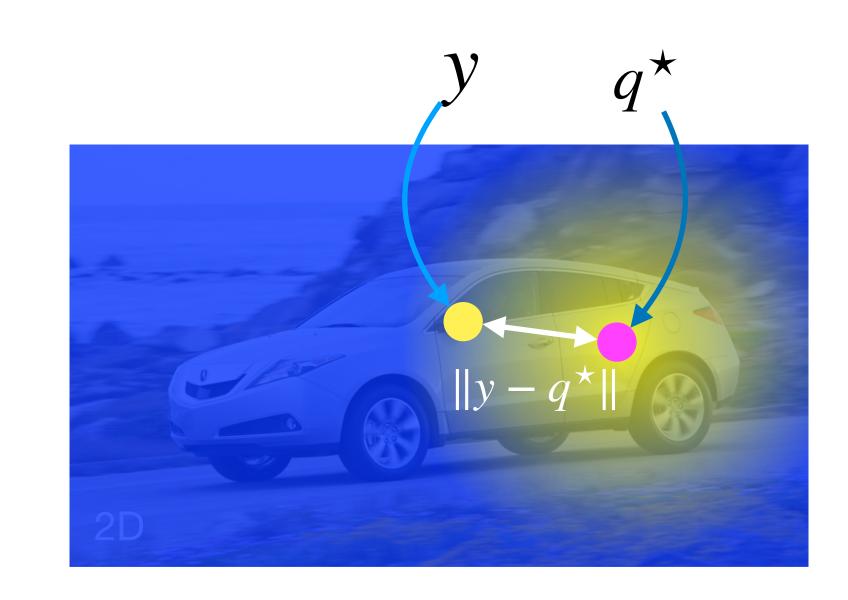
Probabilistically Correct Object Pose Estimation



Conformal Keypoint Detection







Nonconformity function

 $p^* = \max\{f(x)\}$ $q^* = \arg\max\{f(x)\}\$

 $q \in x$

Quantile Scores

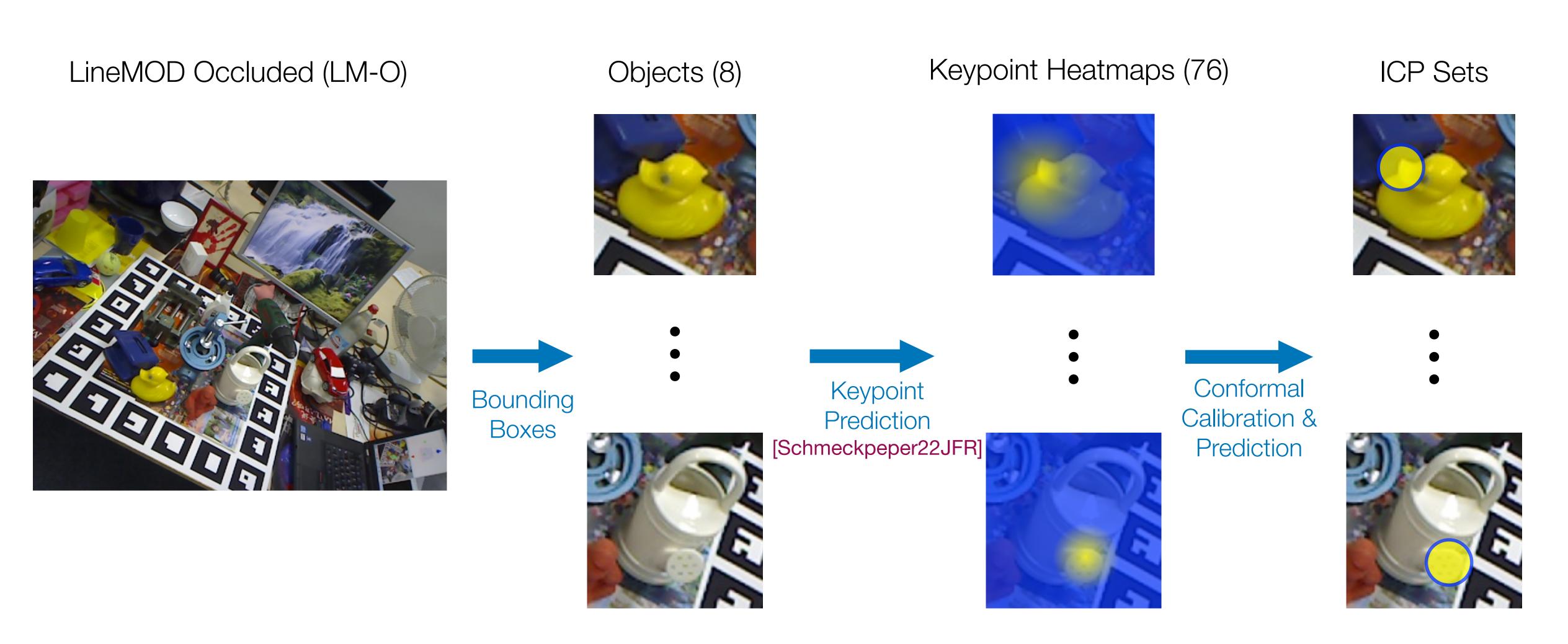
$$r(y,f(x)) = p^{\star} \|y - q^{\star}\| \rightarrow \text{Calibration} \rightarrow \{\alpha_{\pi(i)}\}_{i=1}^{n} \rightarrow \alpha_{\pi(\lfloor (n+1)\epsilon \rfloor)} \rightarrow F^{\epsilon} = \left\{ \|y - q^{\star}_{l+1}\| \leq \frac{\alpha_{\pi(\lfloor (n+1)\epsilon \rfloor)}}{p^{\star}_{l+1}} \right\}$$

$$q^{\star} = \arg\max_{q \in x} \{f(x)\}$$

$$V(x) = p^{\star} \|y - q^{\star}\| \rightarrow C(x)$$

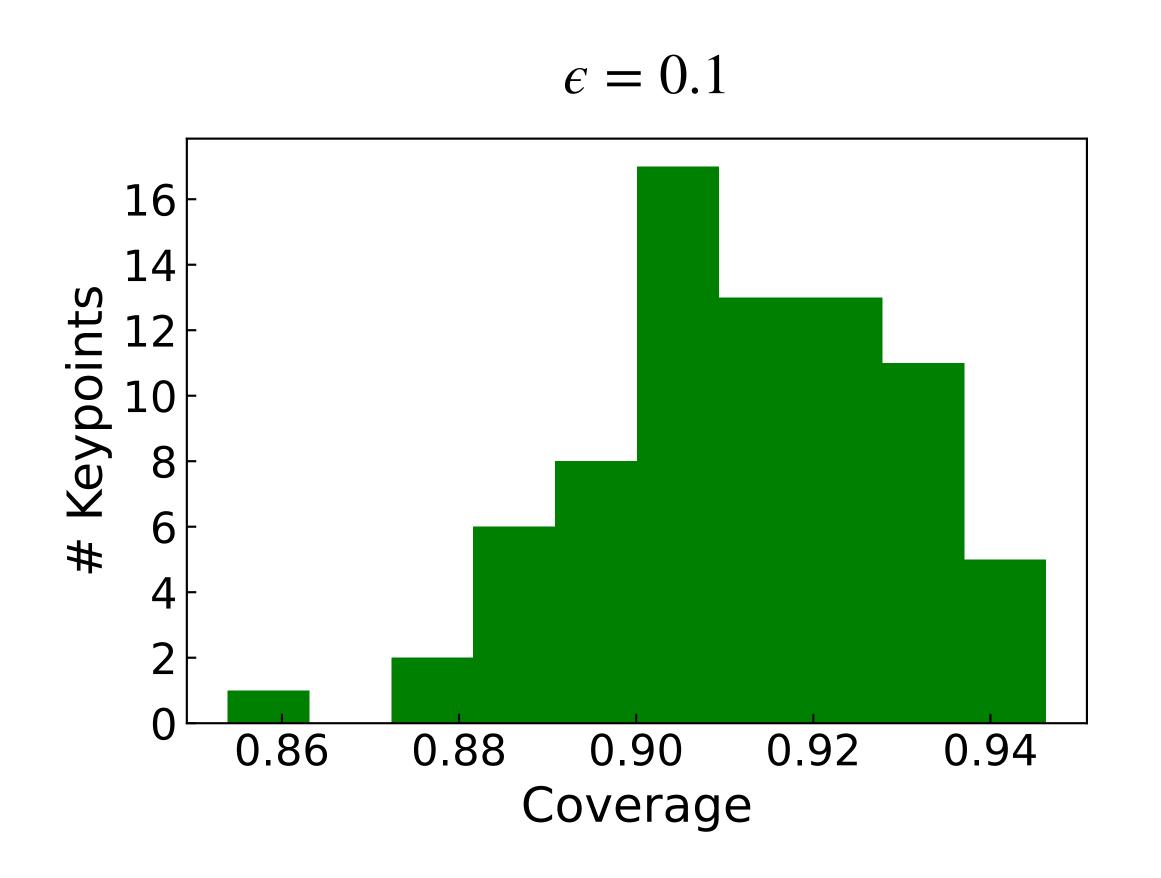
$$V(x) = p^{\star} \|y -$$

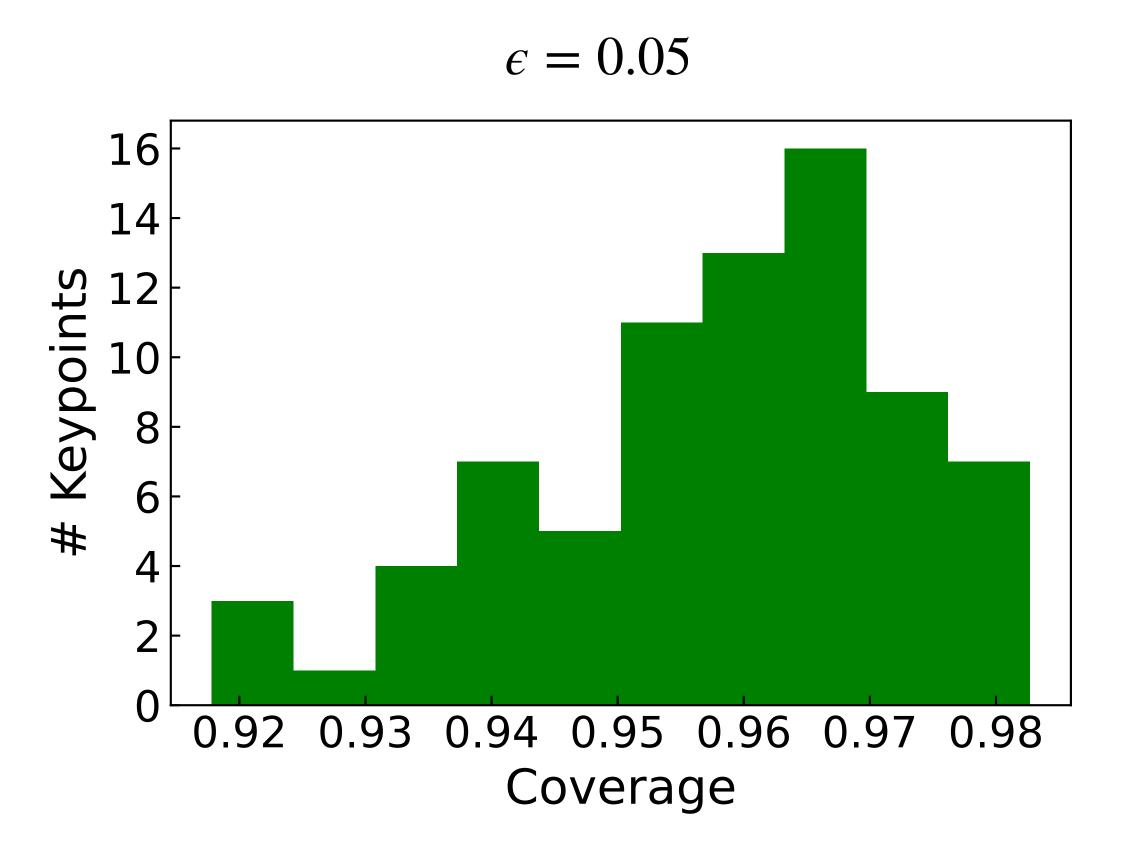
Does it work?



Calibration set size: 200 images; Test set size: 1214 images; $\epsilon=0.1$ and $\epsilon=0.05$

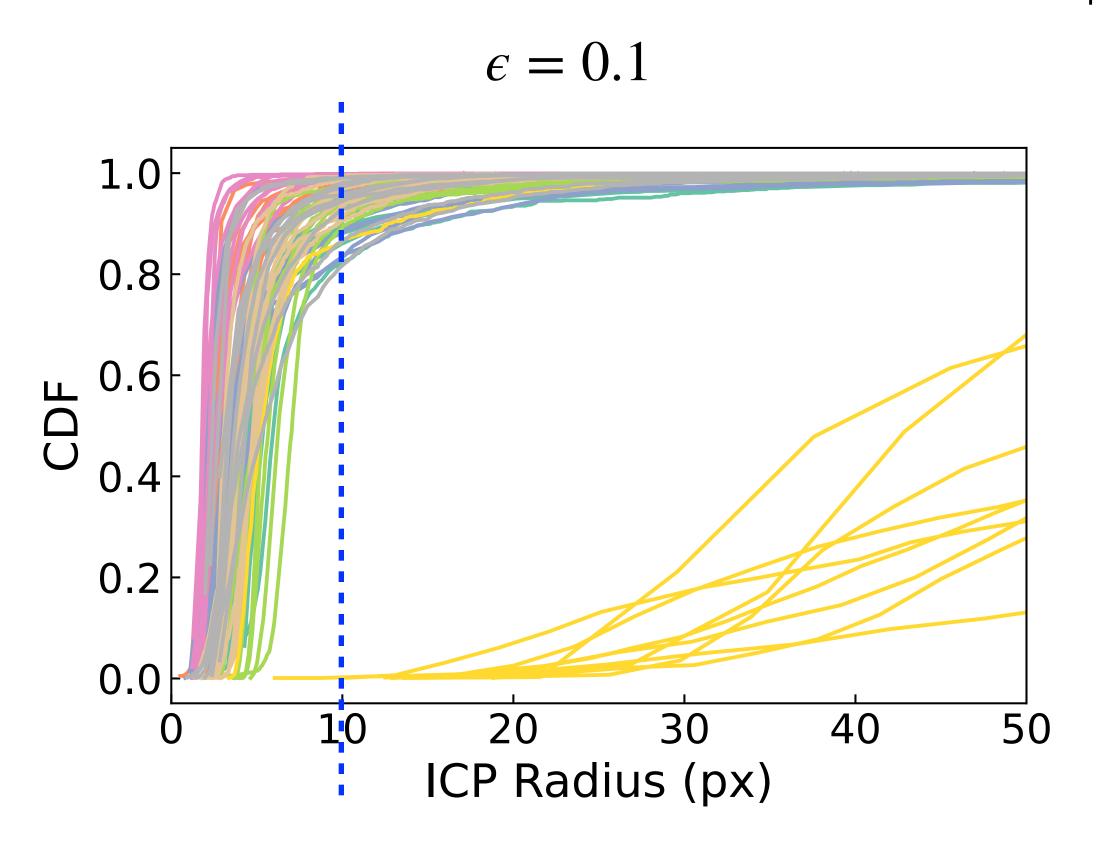
Valid Coverage

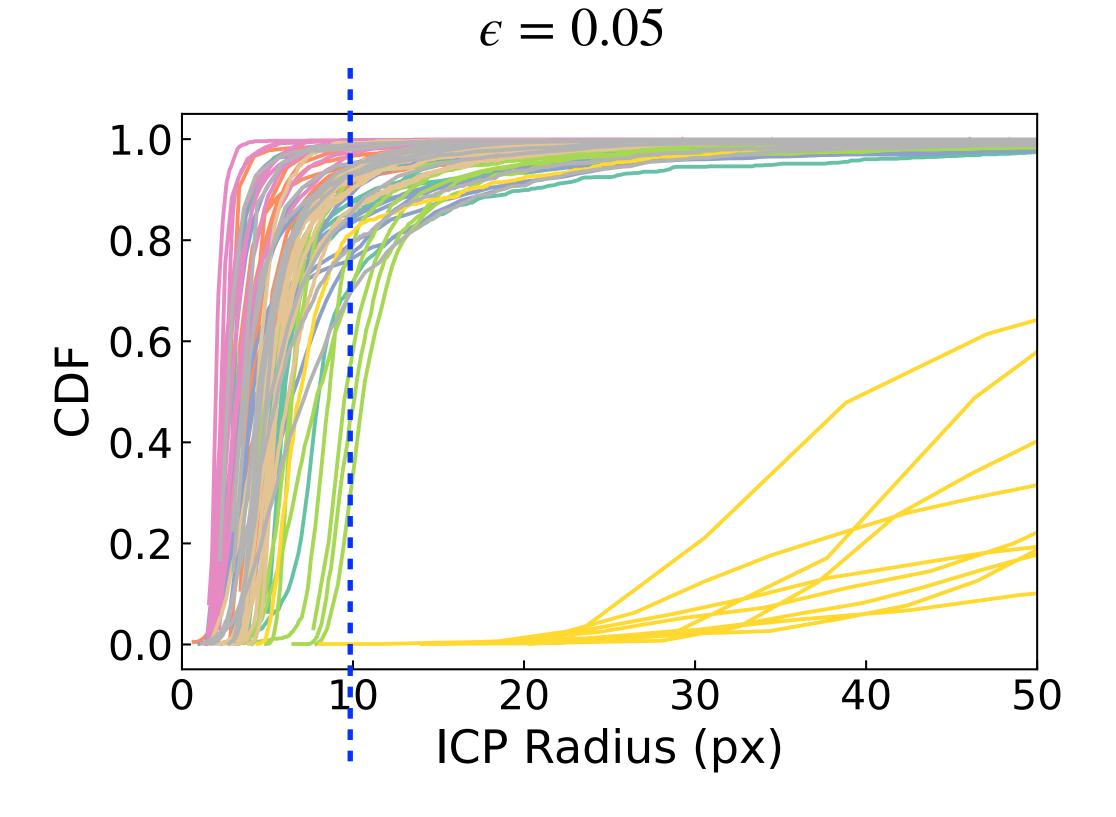




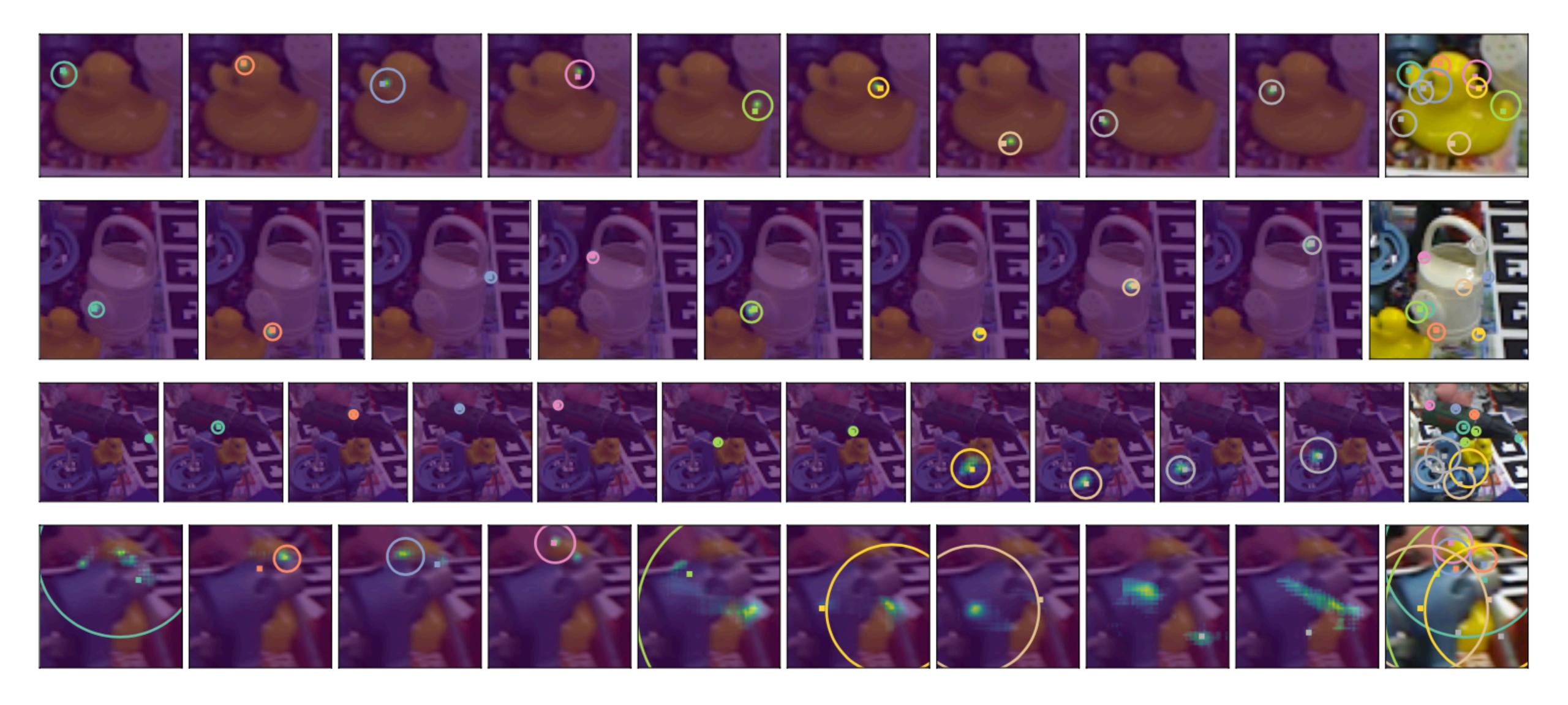
Tight

Heatmap size 64×64



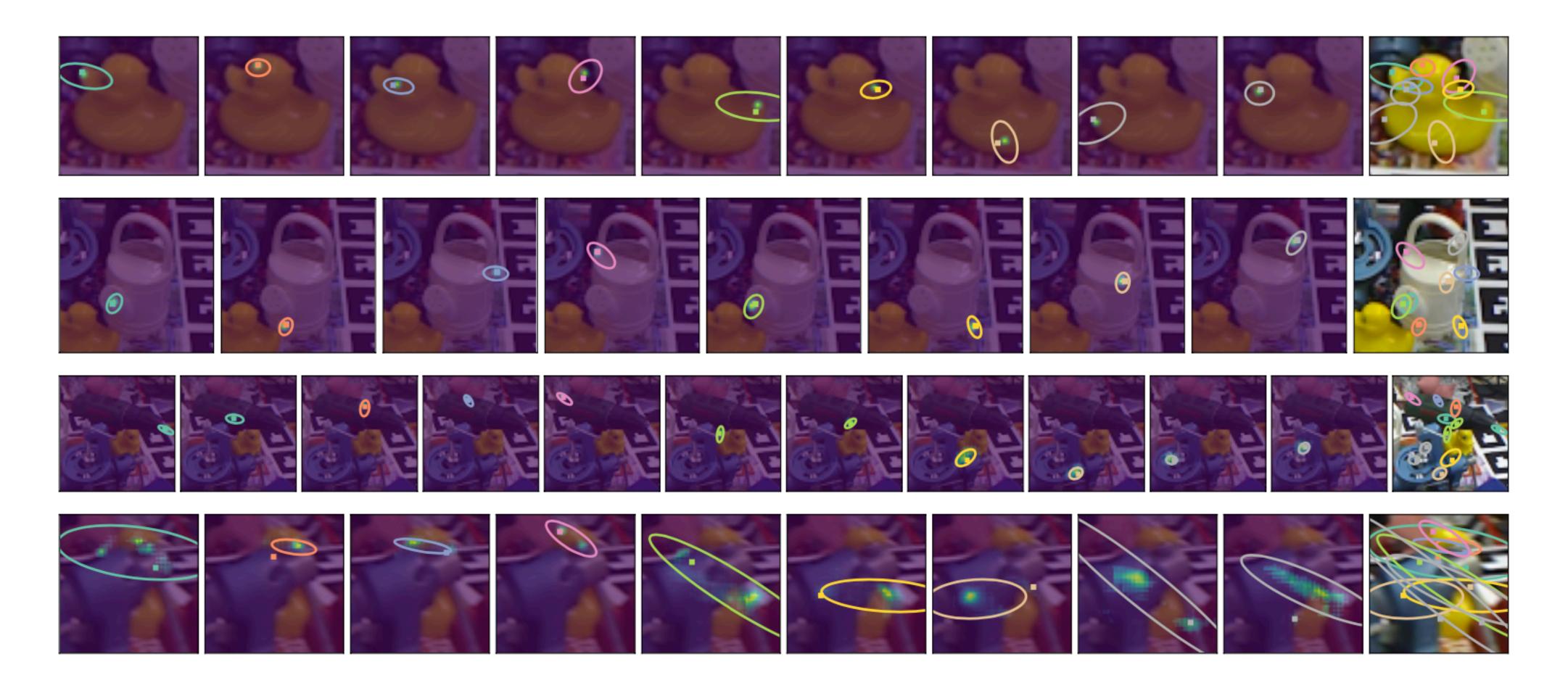


Adaptive

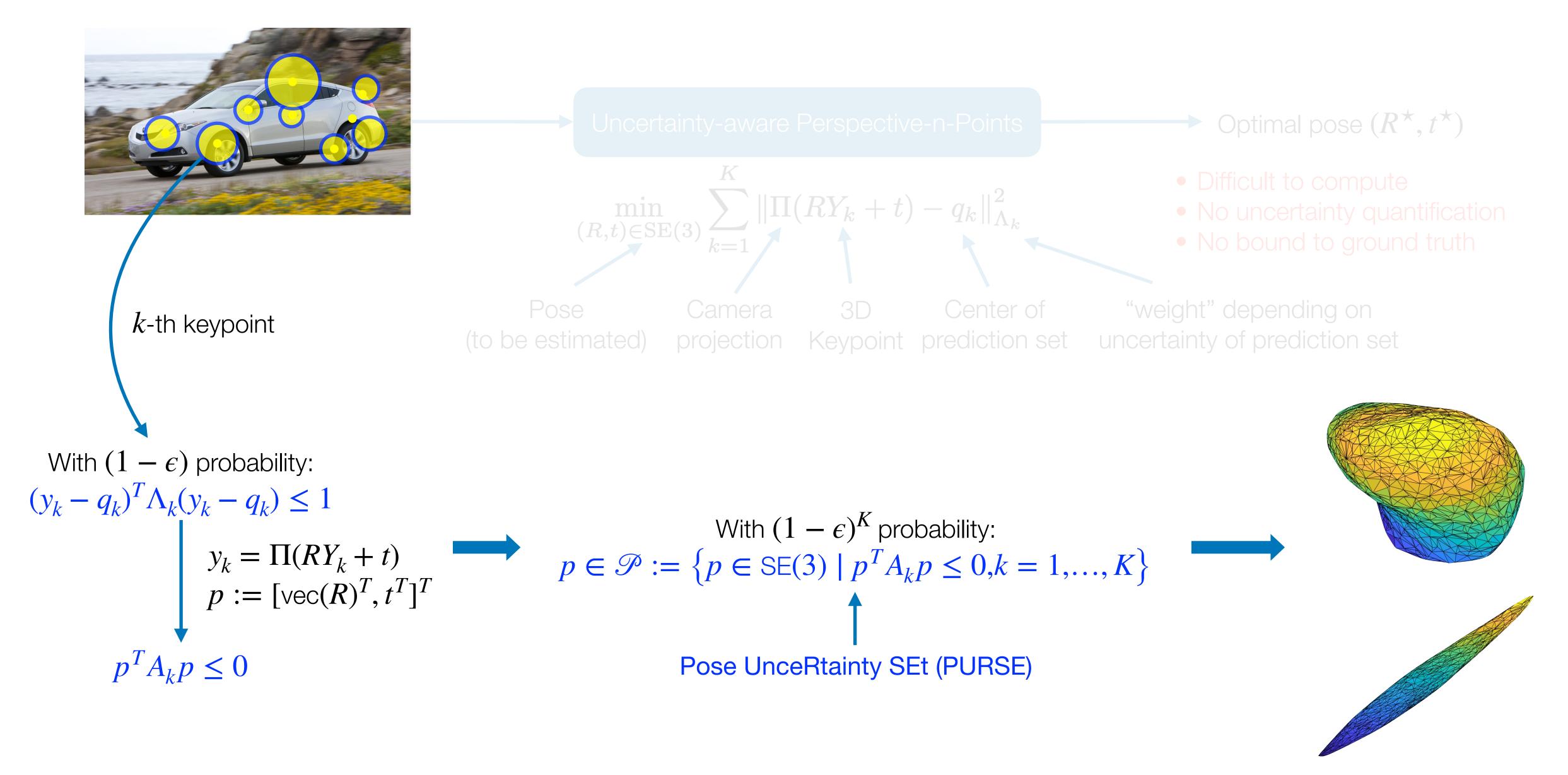


Variations

- We can design nonconformity functions to generate elliptical prediction sets [YP22NeurlPSWorkshop]
- We can "conformalize" the well-known Pixel Voting Network (PVNet)



Geometric Uncertainty Propagation



Characterizing Pose Uncertainty Set

Pose UnceRtainty SEt (PURSE)

With
$$(1-\epsilon)^K$$
 probability:
$$p\in \mathcal{P}:=\left\{p\in \mathrm{SE}(3)\mid p^TA_kp\leq 0, k=1,\ldots,K\right\} \qquad \text{Nonconvex set }!!$$

Algorithm: Sample from PURSE

- 1. Random choose 3 (out of K) prediction sets (ball or ellipse)
- 2. Random sample 2D keypoints $\{\hat{y}_{k_i}\}_{i=1}^3$ inside the prediction sets

3.
$$\{(R_j, t_j)\}_{j=1}^4 = \text{SolveP3P}\left(\{\hat{y}_{k_i} \leftrightarrow Y_{k_i}\}_{i=1}^3\right)$$

4. If $\{(R_j, t_j)\}_{j=1}^4 \cap \mathscr{P} \neq \emptyset$: return success; else: go back to step 1

- Check membership
- Generate sample
- Approximate size from samples
- Optimization —— Semidefinite relaxation (Future work)

Does it work?

Coverage	Cat	Duck	Can	Ape	Driller	Eggbox	Glue	Holepuncher
$\epsilon = 0.1$ $(1 - \epsilon)^K = 0.387$	0.761	0.772	0.686	0.826	0.771	0.741	0.748	0.672
$\epsilon = 0.05$ $(1 - \epsilon)^K = 0.630$	0.880	0.855	0.819	0.932	0.867	0.885	0.883	0.824
PVNet Recall (2D Projection)	0.651	0.614	0.861	0.691	0.731	0.0843	0.554	0.698

No uncertainty quantification

Conclusions & Perspectives

Conclusions:

- Inductive conformal prediction
 - A simple, efficient, distribution-free statistical machinery for probabilistically correct prediction sets
 - Promising for a wide range of computer vision and robotics problems
- Probabilistically Correct Object Pose Estimation
 - Conformal keypoint detection: simple circular or elliptical prediction sets
 - Geometric uncertainty propagation: Pose Uncertainty Set (PURSE)

Perspectives:

Assumption of exchangeability

Use PURSE for downstream planning and control

