

Data driven simulation for AV

Or Litany

ECC

EUROPEAN CONFERENCE ON COMPUTER VISION TEL AVIV 2022

Traditional simulation

Pros:

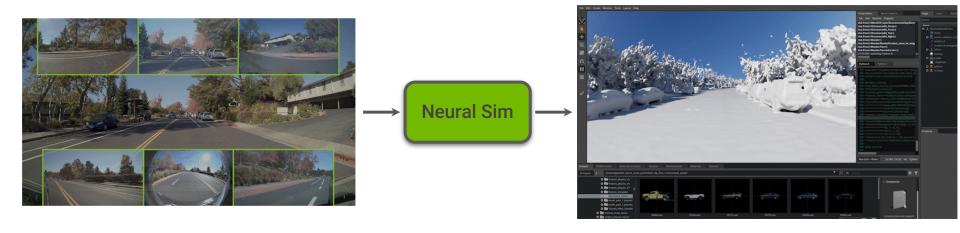
- Generate training data
- Testing in a controlled environment

Limitations:

- Difficult to achieve realism
- Scale: Manual/rule-based content creation
- Log-replay testing: Open loop

Data-driven simulation

- Content scale and diversity: Harvest scenes, scenarios, and objects as simulation assets
- **Realism**: Mitigate the domain gap through sensor view synthesis
- Closed-loop: Learn traffic models from real world scenarios



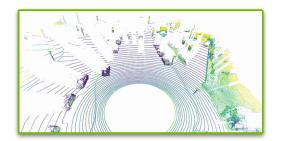
Building blocks

Scene reconstruction

Object reconstruction

Motion estimation and synthesis

Augmented reality



Sensor simulation

Scene reconstruction: Neural radiance field

I-NGP

• Remove dynamic objects, NeRF reconstruction

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, Müller et al., SIGGRAPH 2022

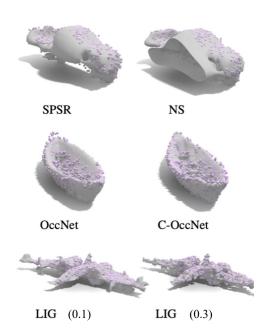
Scene reconstruction: Geometry

- Boosts novel view synthesis
- Provides drivable surface + environment for shadow casting

Data free: Respects input points, no extrapolations

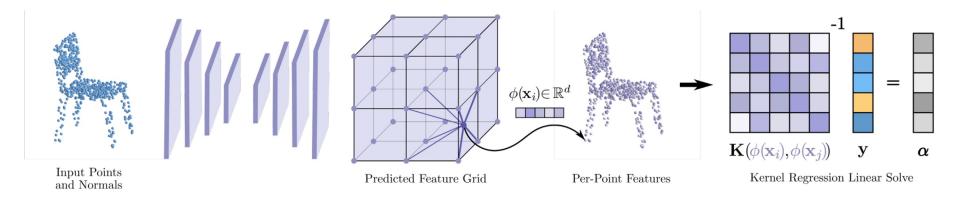
Feed-forward: Miss details ("retrieval")

Test-time optimization: slow, local minima

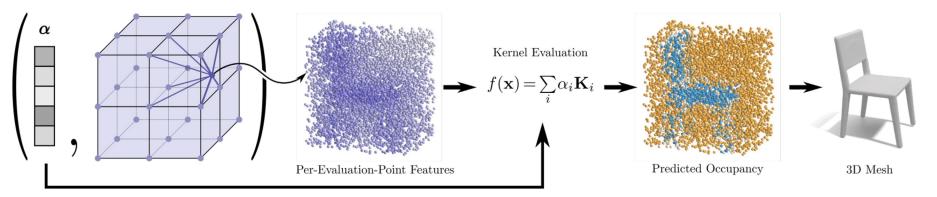


Learnable kernel:

$$egin{aligned} f(oldsymbol{x}) &= \sum_{oldsymbol{x}'_j \in X'} lpha_j K_{(\mathcal{X}, heta)}(oldsymbol{x},oldsymbol{x}'_j). \ &K_{(\mathcal{X}, heta)}(oldsymbol{x},oldsymbol{z}) &= K_{ ext{NS}}([oldsymbol{x}:\phi(oldsymbol{x}|\mathcal{X}, heta)], [oldsymbol{z}:\phi(oldsymbol{z}|\mathcal{X}, heta)]) \end{aligned}$$



Evaluation:



Data free: Respects input points, no extrapolations

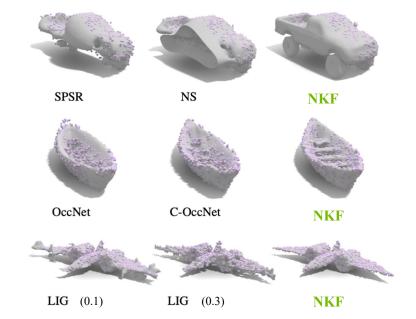
NKF: Data-driven priors

Feed-forward: Miss details ("retrieval")

NKF: Linear test-time optimization to recover details

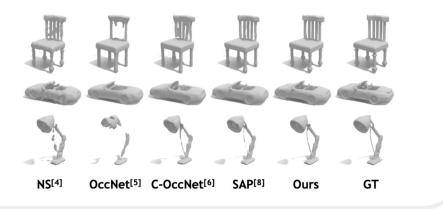
Test-time optimization: slow, local minima

NKF: Global optimum

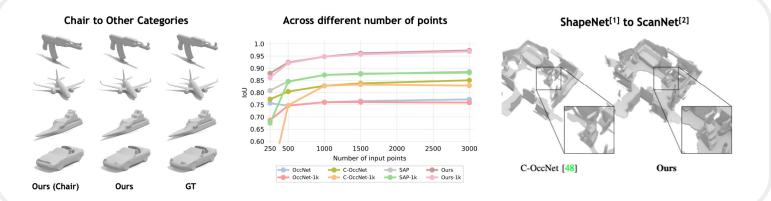


In-category Reconstruction

	IoU ↑		
Noise	$\sigma = 0.0$	$\sigma=0.0025$	$\sigma=0.005$
SPSR	0.772	0.759	0.735
OccNet	0.761	0.747	0.726
C-OccNet	0.828	0.848	0.857
NS	0.864	0.831	0.835
SAP	0.872	0.866	0.849
Ours	0.947	0.908	0.866
Ours w/o norm.	0.924	0.894	0.862



Generalization



Next steps: Real-time + large scale



Asset harvesting

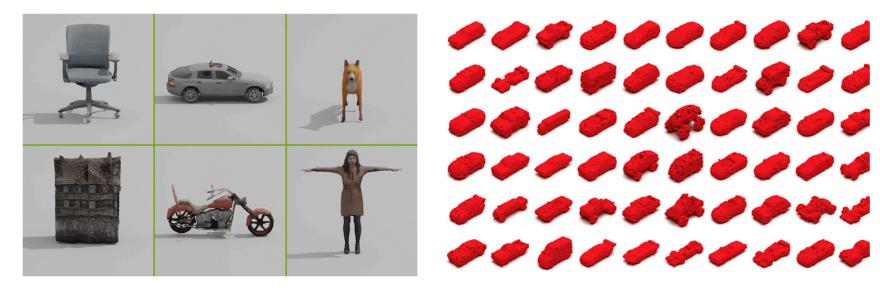
Goal: Reconstruct 3D assets from real-world driving data to be used in simulation.

Harvest assets from driving sequence

Insert harvested objects into a different scene

Extracting Triangular 3D Models, Materials, and Lighting From Images, Munkberg et al., CVPR 2022

Asset generation



GET3D: Trained from images

LION: Trained from pointclouds

GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images, Gao et al., NeurIPS 2022 LION: Latent Point Diffusion Models for 3D Shape Generation, Zeng et al., NeurIPS 2022

Virtual object insertion

- Environment lighting estimation
- Create rare / safety-critical / hard-to-label scenarios.
- Comes with free labels (3D bbox, instance seg., etc.).

Motion Estimation and Synthesis

• Estimation & Replay: Recover original motion from data and replay in simulation

Motion Estimation & Replay

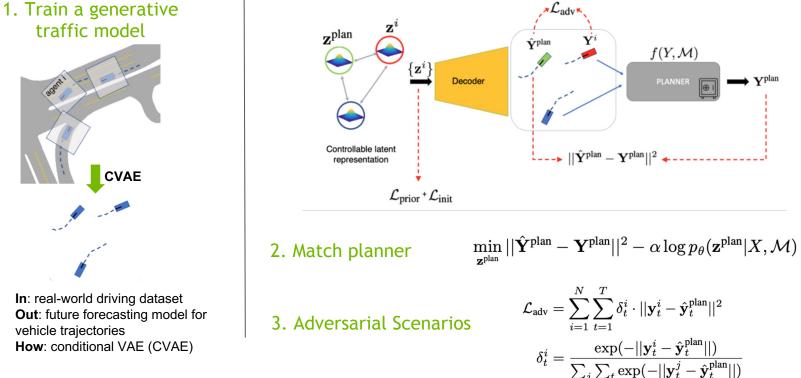
Motion Estimation and Synthesis

• Synthesize & Edit: Make simulation reactive, editable, and add new dynamic agents

Motion Synthesis & Editing

Challenging scenarios from real-world drives

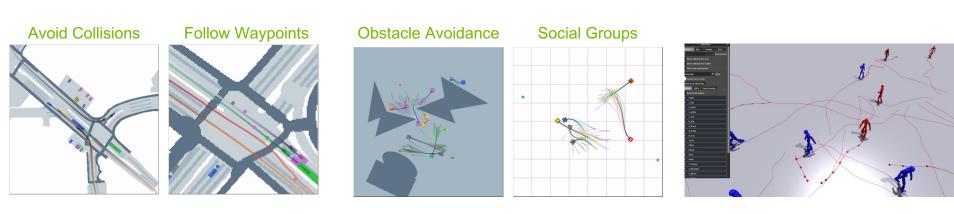
Goal: recover vehicle motion from real-world data and modify to simulate challenging scenarios



STRIVE: Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior, Rempe et al., CVPR 2022

Next: Controllability

Goal: Meet user-defined constraints at simulation time

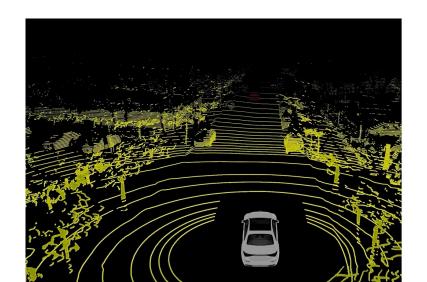


Vehicles

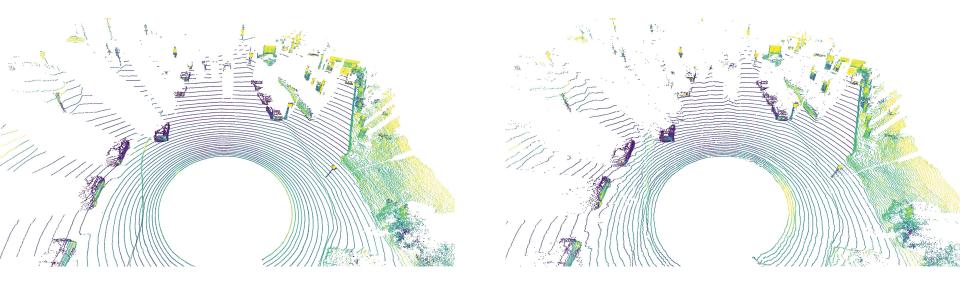
Pedestrians

Active sensors resimulation

- Perception systems often rely on active sensors (e.g. LIDAR) in addition to camera
- Reenactment requires novel view synthesis of these sensors
- Baseline explicit approach:
 - Step 1: Reconstruct a 3D surface from sparse pointclouds
 - Step 2: Learn ray-dropping



Active sensors with neural fields



Original sensor data

LiDAR sensor shifted left by 1 m

Summary

- Useful simulation: Scale, visual and behavioural realism, closed-loop
- These can be achieved in a data-driven fashion:
 - Scene and object reconstruction (color, geometry, material properties)
 - Controllable traffic + motion models
 - Sensor simulation
- Future direction: Controllability, generalization

